LQR-PID Control Applied to Hexacopter Flight

نویسنده

  • A. Alaimo
چکیده

In this paper the mathematical model representing the dynamic of a Unmanned Aerial Vehicle (UAV) is studied in order to analyse its behaviour. In order to stabilize the entire system, linear Quadratic Regulator (LQR) control is used in such a way to set both PD and PID controls in position variables. A set simulation is performed to carry out the results for linear and non linear models. The LQR-PD and LQR-PID allow to move the plant’s poles of UAV in the left half plane since without controller the systems is unstable. Simulations, LQR-PD and LQR-PID controllers are designed by using Matlab/Simulink. The simulations are performed to show how LQR tuned PD and PID controllers lead to zero the error of the position along Z earth direction, stop the rotation of Unmanned Aerial Vehicle (UAV) around body axes and stabilize the hexarotor. c ⃝ 2016 European Society of Computational Methods in Sciences and Engineering

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modelling & Simulation for Optimal Control of Nonlinear Inverted Pendulum Dynamical System using PID Controller & LQR

This paper presents the modelling and simulation for optimal control design of nonlinear inverted pendulum-cart dynamic system using Proportional-Integral-Derivative (PID) controller and Linear Quadratic Regulator (LQR). LQR, an optimal control technique, and PID control method, both of which are generally used for control of the linear dynamical systems have been used in this paper to control ...

متن کامل

Fault-Tolerant Trajectory Tracking Control of a Quadrotor Helicopter Using Gain-Scheduled PID and Model Reference Adaptive Control

Based on two successfully and widely used control techniques in many industrial applications under normal (fault-free) operation conditions, the Gain-Scheduled Proportional-Integral-Derivative (GS-PID) control and Model Reference Adaptive Control (MRAC) strategies have been extended, implemented, and experimentally tested on a quadrotor helicopter Unmanned Aerial Vehicle (UAV) testbed available...

متن کامل

Multivariable Optimal Pid Control of a Heat Exchanger with Bypasses

Nowadays, there are a lot of different control methodologies that could be used within industrial processes. Some of these methodologies have a complex design and also demands an extra engineering effort to design the controller with a superior performance. Some other controllers may not lead to a desirable performance although they are too easy to design. The most common controller used on che...

متن کامل

The Control of a Highly Nonlinear Two-wheels Balancing Robot: A Comparative Assessment between LQR and PID-PID Control Schemes

The research on two-wheels balancing robot has gained momentum due to their functionality and reliability when completing certain tasks. This paper presents investigations into the performance comparison of Linear Quadratic Regulator (LQR) and PID-PID controllers for a highly nonlinear 2–wheels balancing robot. The mathematical model of 2-wheels balancing robot that is highly nonlinear is deriv...

متن کامل

Optimal Control of Inverted Pendulum Based on Two Pid and Lqr Arrangement and Improved Bp Neural Network

BP Neural Network has a longer training time and a slow convergence. To deal with the defects of BP Neural Network a modified BP algorithm is proposed in the paper. The algorithm is applied for the control of Inverted Pendulum, a highly non linear system inherently being open loop unstable. Levenberg-Marquardt algorithm is used for the training purpose. The training samples are being collected ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016